Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients.

Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.

The Journal of clinical endocrinology and metabolism. 2021;(1):64-79

Abstract

CONTEXT Intermittent fasting (IF) is an effective strategy to improve cardiometabolic health. OBJECTIVE The objective of this work is to examine the effects of IF on cardiometabolic risk factors and the gut microbiota in patients with metabolic syndrome (MS). DESIGN AND SETTING A randomized clinical trial was conducted at a community health service center. PATIENTS Participants included adults with MS, age 30 to 50 years. INTERVENTION Intervention consisted of 8 weeks of "2-day" modified IF. MAIN OUTCOME MEASURE Cardiometabolic risk factors including body composition, oxidative stress, inflammatory cytokines, and endothelial function were assessed at baseline and at 8 weeks. The diversity, composition, and functional pathways of the gut microbiota, as well as circulating gut-derived metabolites, were measured. RESULTS Thirty-nine patients with MS were included: 21 in the IF group and 18 in the control group. On fasting days, participants in the IF group reduced 69% of their calorie intake compared to nonfasting days. The 8-week IF significantly reduced fat mass, ameliorated oxidative stress, modulated inflammatory cytokines, and improved vasodilatory parameters. Furthermore, IF induced significant changes in gut microbiota communities, increased the production of short-chain fatty acids, and decreased the circulating levels of lipopolysaccharides. The gut microbiota alteration attributed to the IF was significantly associated with cardiovascular risk factors and resulted in distinct genetic shifts of carbohydrate metabolism in the gut community. CONCLUSION IF induces a significant alteration of the gut microbial community and functional pathways in a manner closely associated with the mitigation of cardiometabolic risk factors. The study provides potential mechanistic insights into the prevention of adverse outcomes associated with MS.

Methodological quality

Metadata

MeSH terms : Fasting